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Abstract— Using the two forms of Fish-Bone potential (I and II), a self-consistent calculations are carried 

out to perform the analysis of binding energies, root mean square radii and form factors using different 

configuration symmetries of 20Ne nucleus. A computer simulation search program has been introduced to 

solve this problem. The Hilbert space was restricted to three and four dimensional variational function 

space spanned by single spherical harmonic oscillator orbits. A comparison using Td and D3h configuration 

symmetries are carried out. 
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I. INTRODUCTION 

The concept of cluster structure in nuclei has been a subject of interest since the early days of nuclear 

physics till now [1]-[3]. The idea is largely supported by the fact that alpha particles have exceptional 

stability and that they are the heaviest particles emitted in natural radioactivity.  Various models have been 

proposed to account for possible nuclear clustering and to study its effects [4]. Later, a simple version of the 

model, in which the alphas are assumed to have no internal structure is considered. The concept of alpha- 

clustering has found many applications to nuclear reactions and nuclear structures [5,6] .  

Many such clusters are possible in principle, but the formation probability depends on the stability of the 

cluster, and of all possible clusters the alpha particle is the most stable due to its high symmetry and binding 

energy. Thus a discussion of clustering in nuclei is mainly confined to alpha-particle clustering. For the α-

nuclei 8Be, 12C, 16O, 20Ne, 24Mg, 28Si, 32S, the  geometrical equilibrium configuration of the α-particles are 

generally assumed to belong to the symmetry point groups  D∞h, D3h, Td, D3h, Oh (or alternatively  D4h) , 

D5h, D6h, respectively. The 20Ne have also two other configuration symmetries; the Td configuration 

symmetry and the D2d configuration symmetry in addition to the D3h configuration symmetry.  

In each configuration studied, it was assumed that the nucleons form persistent alpha-particle clusters 

arranged in some symmetric fashion. 

The Fish-Bone potential [7] of composite particles simulates the Pauli effect by nonlocal terms. The α-α 

fishbone potential be determined by simultaneously fitting to two-α resonance energies, experimental phase 

shifts, and three-α binding energies. It was found that, essentially, a simple Gaussian can provide a good 

description of two-α and three-α experimental data without invoking three-body potentials. Many authors 

adopted the fishbone model because, in their opinion, this is the most elaborated phenomenological cluster-

model-motivated potential. The variant of the fishbone potential has been designed to minimize and to 
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neglect the three-body potential. Therefore, they can try to determine the interaction by a simultaneous fit to 

two- and three-body data [8]. 

     The aim of this work is to employ the D3h configuration symmetry and the Td configuration symmetry of  
20Ne nucleus and using the Fish-Bone potential of type I and II to obtain the binding energies, root mean 

square radius, and the form factors of  the 20Ne nucleus.    

 

II. THE THEORY 

We consider a system of N identical bosons described by a Hamiltonian of the usual form 
                                                                                         

   Where t(i) is  the kinetic energy operator   ith particle and v(i,j) the two-body interaction. In Hartree-Fock 

method, one takes for the best choice of the normalized wave function  the one that it minimizes the 

expectation value of the Hamiltonian H  
 

 

 

In most Hatree-Fock calculations for light nuclei one has taken the subspace spanned by the lowest 

harmonic oscillator shell l j >. We assume that all the particles occupy the same orbital  belonging to the 

average field. Hence the intrinsic state of the whole system would be described by the symmetric wave 

function 
   

In this subspace, the HF orbitals l > are then determined by their expansion coefficients m
j .  

 

 

 

And the HF-Hamiltonian h(1 , 2 ,….. N) is replaced by the matrix 
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The HF equations are then replaced by the matrix equation 
 

 

    

One proceeds by iteration until self-consistency is achieved 

 

Fish-Bone  potential : 

      A fishbone potential of the α-α system was determined by Schmid E. W. [9] . The harmonic oscillator 

width parameter was fixed to a = 0.55 fm−2 and the local potential was taken in the form 
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where v0 = -108.41998MeV and β = 0.18898fm-2 and called Fish-Bone I(FB-1)While this potential provides 

a reasonably good fit to l = 0 and l = 2 and l = 4 partial wave phase shifts, it seriously overbinds the three-α 

system as shown in ( table 1) . The experimental binding energy of the three-α (12C) system is E3α = -7.275 

MeV. 

Table 1 

L = 0 three- binding energy as a function of subsystem angular  momentum lmax in case if  fish-bone 

potential of Kircher and Schmid (FB-1)[9] and the results of Papp Z. and Moszkowski S. (FB-2). 
 

Lmax 

 

FB-1 FB-2 

2 0.057 -0.313 

4 -15.47 -7.112 

6 -15.63 -7.273 

8 -15.63 -7.275 

 

One may conclude that there is a need for three-body potential. This was the choice Oryu and Kamada[10]. 

They added a phenomenological three-body potential to the fish-bone potential of Kircher and Schmid[9] 

and found that a huge three-body potential is needed to reproduce the experimental data. But, Faddeev 

calculations[8] reveal that the = 4 partial wave is very important to the three- α binding and, for this 

partial wave, the fit to experimental data is not so stellar. So Papp Z.and  Moszkowski S.[8] concluded, that 

it may be possible to improve the agreement in the = 4 partial wave and achieve a better description for 

the three- α binding energy in the point view of the these authors. 

 

          Thus as a local potential, two Gaussians plus screened Coulomb potential are added to form Fish-

Bone II(FB-2): 
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where v1, β1, v2, β2 and  a  are fitting parameters. In the fitting procedure Papp Z. and Moszkowski S.  

incorporated the famous 8Be, l = 0 resonance state at exp
2E  b  = (0.0916 -0.000003i) MeV, the 12C three- α 

ground state energy exp
3E  b = -7.275 MeV, and the l = 0, l = 2 and l = 4 low energy phase shifts. With 

parameters v1 = -120.30683493 MeV, β1 = 0.20206127 fm-2, v2 = 49.06187648 MeV, β2 = 0.76601097 fm-2 

and a = 0.64874009 fm-2 , they achieved a perfect fit.  
 

For the l = 0 two-body resonance state they get E2b = 0.09161 – 0.00000303i MeV, and for the three-body 

ground state E3b = -7.27502 MeV. Notice that unlike with the Ali-Bodmer potential, they achieved this 

agreement by using the same potential in all partial waves. Having this new α-α fish- bone potential from 

the fitting procedure, they also calculated the first excited state of the three- system. This state is a resonant 

state, and we got 3E  res
  = (0.54- 0.0005i) MeV, which is again very close to the experimental value. 

   

Solutions in a Three and Four Dimensional Space : 
 

     We consider solutions in a three dimensional variational space spanned by the orthonormal states  l 1> , l 

2 > and l 3> . In this case, we have twenty-one different symmetrized two-body matrix elements. 

 

A HF-orbital  will have the general form 

 

 

Where 
 

 

And assume that the coefficient mj ‘s are real. 
 

 

 

     To investigate the HF-solutions , we have to specify the alpha-alpha potential. The specific combinations 

chosen as the basic states depend on the symmetry of the intrinsic structure that is expected from the 

molecular alpha-particle model. 

   Now we chose basic states which are invariant with respect to the transformation of the symmetry group 

Td [11]. Therefore, we chose our three basic states as 
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Where  is a parameter determined from the Td symmetry. 
 

    We chose  also basic states which are invariant with respect to the transformation of the symmetry group 

D3h . Therefore, we chose our four basic states as  
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Here the oscillator shell model wave functions are given by 
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0=(h/m)1/2 is the oscillator parameter. 
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Nuclear Density and Form Factor : 

 

  For a system of  number of alpha particles in the above basic states, the corresponding  charge density 

normalized to unity, is readily found to be 
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The form factor corresponding to the spherical part of the charge density can be readily evaluated, one 

readily  obtains 
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  where q is the momentum transfer. The expression of F(q) has to be multiplied by a form factor  Fα which 

account for the -particle distribution where 
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Fish-Bone Potential I Calculations : 

 

     Using the Fish-Bone potential I (FB-1) according to its equation (8), we have the following results of the 

binding energies and root mean square radii of 20Ne nuclei, where the alpha particles are arranged according 

to the Td and D3h  symmetries. 

 

 

Table 2 

The parameters used in our calculations of fishbone 

Potential I of 20Ne 
 

 

 

 

                                        

 

 

 

 

 

 

 

     Symmetry V0(MeV) 

 

β1(fm-2) a (fm-2) 

 Td  

 

-9 0.1889 0.55 

D3h 

 

-19 0.1889 

 

0.55 
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Table.3 

The calculated binding energies and root mean square radii of 20Ne using the Fish-Bone potential I 

 
 

Symmetry 

 

Theor. B.E.(MeV) 

 

Exp.B.E.(MeV) 

 

Theor. rms (fm) 

 

Exp. Rms (fm)(a) 

 

Td 

 

-19.397 

 

-19.18 

 

2.711 

 

2.91±0.05 

 

D3h 

 

-20.454 

 

-19.18 

 

2.833 

 

2.91±0.05 

 

Fish-Bone Potential II Calculations : 

Using the Fish-Bone potential II (FB-1) as in equation(9), we have the following results of the binding 

energies, root mean square radii and form factors 
 

Table.4 

The parameters used in our calculations of Fish-Bone Potential II of 20Ne 
 

 

 

 

 

 

 

 

 

 

 

Table.5 

 The calculated binding energies and root mean square radii of 20Ne using the Fish-Bone potential II 

 

 

Symmetry 

 

Theor. 

B.E.(MeV) 

 

Exp.B.E.(MeV) 

 

Theor. rms (fm) 

 

Exp. Rms (fm) 

 

Td 

 

-23.385 

 

-19.18 

 

2.963 

 

2.91±0.05 

 

D3h 

 

-20.368 

 

-19.18 

 

2.847 

 

2.91±0.05 
 

 

 

 

 

 

Symmetry 

 

 

V1(MeV) 

 

 

V2(MeV) 

 

β1(fm-2) 

 

β2(fm-2) 

 

a (fm-2) 

Td -97 39 0.2021 

 

0.7660 0.6487 

D3h -65 21 0.2021 

 

0.7660 0.6487 
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Fig. 1 : The form factor of 20Ne which have the configuration symmetry Td  and using 
        the parameters of Table 4 of FB-II .The points represent experimental values. 
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Fig. 2: The form factor of 20Ne which have the configuration symmetry D3h  and using  
         the parameters of Table 2 of FB-I. The points represent the experimental values.  
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Fig. 3: The form factor of 20Ne which have the configuration symmetry D3h and using 
         the parameters of Table 4 of FB-II. The points represent the experimental values. 

 

 

III. DISCUSSION 

By using the two types of the Fish-Bone potentials I and II and with the oscillator  parameter Bt  for 20Ne  in 

addition to the parameter of the alpha particle Bα ,and also considering the different configuration 

symmetries of 20Ne; Td and D3h symmetries, we have got the nuclear structure properties of the  20Ne  nuclei 

such as binding energies, root mean square radii and form factors, and comparing the results with the 

experimental elastic scattering charge form factor [12] and other theoretical ones[13].  

In case of Fish –Bone potential I (FB-1) , the binding energy of 20Ne nuclei and the root mean square radius 

are in good agreement with the experimental results as shown in Table (3), but we have not got form factors 

for 20Ne nuclei in case of  considering that the 20Ne nucleus posses the configuration symmetry Td . On the 

other hand, when we consider the four dimensional functional space, we have got the form factor as shown 

in Fig. (1).  Applying  the Fish-Bone potential II, we have got the binding energy,  the root mean square 

radius and the form factors  for 20Ne nuclei either we consider the 20Ne nuclei have Td symmetry  or D3h 

symmetry as shown in Figs.(2) and Fig. (3) . 

    We conclude that the configuration symmetry D3h of 20Ne nucleus yielded better results than that of Td 

symmetry, and the results are in acceptable agreement with the experimental points in addition to other 

theoretical ones. 
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